Optical properties and structure of $R_2O-Ga_2O_3-SiO_2$ and $RO-Ga_2O_3-SiO_2$ glasses

H. Doweidar

Received: 20 November 2008 / Accepted: 4 March 2009 / Published online: 7 April 2009 © Springer Science+Business Media, LLC 2009

Abstract Refractive index and molar refraction of Li₂O–, Na₂O–, CaO–, and BaO–Ga₂O₃–SiO₂ glasses have been used to test the validity of a structural model of silicate glasses containing Ga₂O₃ glasses. Ga₂O₃ enters these types of glass in a similar manner as Al₂O₃. It is assumed that, for (SiO₂/Ga₂O₃) >1 and (Ga₂O₃/R₂O) ≤1, Ga₂O₃ associates primarily with modifier oxides to form GaO₄ units. The rest of modifier oxide forms silicate units with nonbridging oxygen ions. Silicate structural units have the same factors as found for binary alkali- and alkaline earth silicate glasses. Differences between experimental and model values suggest another structure for (Ga₂O₃/SiO₂) ≥1.

Introduction

There is a growing interest about the role of Ga_2O_3 in various types of glass. Glasses containing considerable amounts of Ga_2O_3 are characterized with high refractive index, density, infrared transmission, and nonlinear optical coefficients [1–6]. The role of Ga_2O_3 in the structure of oxide glasses is, to a great extent, similar to that of Al_2O_3 [7]. It is believed that Ga_2O_3 mostly forms GaO_4 tetrahedra that contribute to the structure as network former units [3–11]. Like AlO_4 units, the negative charge on the GaO_4 tetrahedron might be compensated by a positive charge.

H. Doweidar (🖂)

The latter may come through association of Ga_2O_3 with alkali- or alkaline earth oxide.

Further structural features were reported for Ga₂O₃ in oxide glasses. In addition to GaO₄ tetrahedra, minor concentration of GaO₆ octahedral units can form in glasses where modifier oxygen content is insufficient to convert Ga₂O₃ to GaO₄ tetrahedra. Examples for such glasses are $50PbO \cdot 50Ga_2O_3$ and $80Bi_2O_3 \cdot 20Ga_2O_3$ [9]. NMR investigations on Cs₂O-Ga₂O₃ glasses [10] indicated that only GaO_4 units are formed for $(Ga_2O_3/Cs_2O) < 3/7$. GaO_6 units were observed in the structure for higher Ga₂O₃ concentration. EXAFS analysis of xPbO \cdot (1 - x)Ga₂O₃ glasses (x = 0.7, 0.75, and 0.8) [12] indicated that most of Ga^{3+} ions form GaO_4 tetrahedra with less than 5% of GaO_6 octahedra. In analogy to Al₂O₃ that forms minor concentration of 5- and 6-coordinated aluminum ions in CaO- Al_2O_3 -SiO₂ glasses [7] it is suggested that Ga^{3+} ions can form similar groups. Peng and Stebbins [7] came to a general conclusion that gallium ions occupy sites like those of aluminum ions and therefore, for the first approximation, they can be treated in a similar manner.

Furthermore, it has been reported that non-bridging oxygen ions (NBOs) can form at GaO₄ sites. Fukumi and Sakka [13] indicated that NBOs appear in alkali- and alkaline earth gallate glasses for modifier oxide content greater than about 43 mol%. The fraction of GaO₄ units containing NBOs increases with increasing the modifier oxide content. On the other hand, in a 66.7CaO \cdot 33.3Ga₂O₃ glass there are only GaO₄ tetrahedra [14]. NBOs were observed at GaO₄ tetrahedra in BaO–SrO–Ga₂O₃ and MgO–SrO–Ga₂O₃ glasses. The fraction of NBOs decreases with substituting MgO for SrO [15]. A Raman band at about 650 cm⁻¹ in the spectra of PbO–Bi₂O₃–Ga₂O₃ glasses is attributed to NBOs at the GaO₄ sites [16]. The increase in the content of PbO or Bi₂O₃ causes a decrease in the fraction of NBOs. Ruller and

Glass Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt e-mail: hdoweidar@mans.edu.eg

Jewell [17] used Raman and infrared spectroscopies to study the structure of the glasses (80 - x)PbO $\cdot (10 + x)$ - $Ga_2O_3 \cdot 10SiO_2 \ (5 < x < 25 \text{ mol}\%) \text{ and } (75 - x/2)PbO \cdot$ $(25 - x/2)Ga_2O_3 \cdot xSiO_2$ $(0 \le x \le 20 \text{ mol}\%)$. NBOs could be detected in all cases at the GaO₄ sites whereas there were no signs of NBOs at the silicate sites. Recently, $Li_2O \cdot Ga_2O_3(or Al_2O_3) \cdot 2SiO_2$, $Na_2O \cdot Ga_2O_3$ (or Al_2O_3) · 2SiO₂, CaO · Ga₂O₃(or Al_2O_3) · 2SiO₂, and $Y_2O_3 \cdot Ga_2O_3$ (or Al₂O₃) \cdot 2SiO₂ glasses were investigated using high resolution ²⁷Al MAS and two-dimensional triplequantum MAS (3QMAS) NMR [7]. No NBOs were detected in the glasses containing Li2O and Na2O. A small fraction of NBOs was observed at the silicate sites in glasses containing CaO. Glasses containing Y₂O₃ have appreciable amount of NBOs at the silicate sites. In all cases the fraction of NBOs is relatively greater in glasses containing Ga₂O₃.

NBOs could also be detected at AlO₄ sites. A peak at 155 ppm in ¹⁷O MAS NMR spectrum of the glass 61.5CaO · 37.9Al₂O₃ · 0.6SiO₂ (mol%) is attributed to Al-NBOs. The fraction of Al-NBOs decreases with increasing the SiO₂ content. A minor fraction of Al-NBOs is found in the glass 52CaO · 28Al₂O₃ · 20SiO₂ and it disappeared in the glass 50CaO · 17Al₂O₃ · 33SiO₂ [18]. In CaO–Al₂O₃–SiO₂ with CaO:Al₂O₃:SiO₂ = 3:1:2, 3:1:3, and 2:2:3 (mole ratio) NBOs are detected only at the silicate sites, but not at AlO₄ tetrahedra [19]. In *x*Na₂O · (1 – *x*)Al₂O₃ · SiO₂ glasses (*x* = 0.5, 0.67, 0.83 and 1) NBOs were observed only at silicate sites for *x* > 0.5 [20].

The above information may lead to a conclusion that NBOs at GaO₄ units are formed under certain conditions. At first, they can form in glasses free of silica and having excess of modifier oxide, i.e. (modifier oxide/Ga₂O₃) >1. NBOs at GaO₄ sites can also form in glasses containing low concentration of SiO₂ and higher content of modifier oxide than that of Ga₂O₃. By low concentration of SiO₂ we mean, at the present time, that (SiO₂/Ga₂O₃) <1. The same can be said for NBOs at AlO₄ units. In all cases Ga₂O₃ has priority to associate itself with modifier oxides to form GaO₄ tetrahedra.

In a previous work [21] the density of Li_2O_- , Na_2O_- , CaO_- and $BaO_-Ga_2O_3$ -SiO₂ glasses was analyzed by assuming priority of formation of NBOs at GaO_4 units. In the present work the distribution of structural units is revised and used to analyze the refractive index and molar refraction of those glasses.

Procedure

modifier oxide is distributed between Ga₂O₃ and SiO₂ as follows. In the first process the modifier oxide associates with Ga₂O₃ forming GaO₄ units. This process continues (at a rate of two GaO₄ units per Ga₂O₃ molecule) till the entire Ga₂O₃ content is converted. The rest of modifier oxide preferentially forms NBOs at the silicate sites. The type and fraction of silicate units depend on the quantity of modifier oxide available to associate with SiO₂. For (R₂O– Ga₂O₃)/SiO₂ ≤0.5 the matrix would contain Q₄ and Q₃ units (Q₄ is a SiO₄ tetrahedron without NBOs, Q₃ is a tetrahedra containing one NBO). In the region of 0.5 < (R₂O–Ga₂O₃)/SiO₂ ≤ 1 there should be Q₃ and Q₂ units, where the latter is a tetrahedron containing two NBOs [22].

The distribution of structural units in a glass having the molar formula $xR_2O \cdot yGa_2O_3 \cdot zSiO_2$ having $(Ga_2O_3/R_2O) \le 1$ and $(R_2O-Ga_2O_3)/SiO_2 \le 0.5$, can be expressed as

$$x R_2 O + y G a_2 O_3 + z S O_2 \rightarrow 2y G_4 + 2(x - y) Q_3 + [z - 2(x - y)] Q_4.$$
 (1)

Here G_4 is a GaO₄ tetrahedron containing four bridging oxygen ions. For such glasses the refractive index (μ) can be given as

$$\mu = \{2yf_{G4} + 2(x - y)f_{S3} + [z - 2(x - y)]f_{S4}\}N_A$$
(2)

where f_{G4} is the differential refraction [22] of the GaO₄ tetrahedron that has no NBOs, f_{S3} is the differential refraction of the Q₃ unit containing one NBO ion, f_{S4} is the factor for the Q₄ unit, and N_A is Avogadro's number. Equation 2 can also be used for CaO–Ga₂O₃–SiO₂ and BaO–Ga₂O₃–SiO₂ glasses. In these glasses each molecule of the modifier oxide converts a Ga₂O₃ molecule producing two G₄ units, depending on the composition. Here a G₄ unit would include a half Ca²⁺ or Ba²⁺ ion.

In $xR_2O \cdot yGa_2O_3 \cdot zSiO_2$ glasses having x = y Eq. 2 would be

$$\mu = (2yf_{G4} + zf_{S4})N_A.$$
(2a)

In previous studies [22–24] it has been shown that in multi-component silicate glasses f_{S4} has mostly the same value found for vitreous SiO₂ (2.422 × 10⁻²⁴). This value can be used in Eq. 2a to calculate f_{G4} . The latter can also be obtained by solving Eq. 2a simultaneously for two μ values of such glasses. Another way to get f_{G4} is to use f_{S3} and f_{S4} of binary silicate glasses [22, 24] directly in Eq. 2. The values of f_{G4} given in Table 5 are obtained by applying these procedures. These values represent the average of the calculated values for each type of modifier oxide.

In $xR_2O \cdot yGa_2O_3 \cdot zSiO_2$ glasses having $(Ga_2O_3/R_2O) \le 1$ and $0.5 \le (R_2O-Ga_2O_3)/SiO_2 \le 1$ Q₄ units do not exist and Q₂ units are formed from Q₃ units. Q₂ unit is a tetrahedron containing two NBOs. In this case, formation of the structural units goes on as

$$xR_2O + yGa_2O_3 + zSiO_2 \rightarrow 2yG_4 + [2(x - y) - z]Q_2 + 2[z - (x - y)]Q_3.$$
(3)

Then the refractive index can be expressed as

$$\mu = \{2yf_{G4} + [2(x-y) - z]f_{S2} + 2[z - (x-y)]f_{S3}\}N_A$$
(4)

where f_{S2} is the differential refraction of the Q₂ unit that contains two NBO ions. Values of f_{G4} and f_{S3} can be used

Fig. 1 Determined refractive index μ_m of Li₂O–Ga₂O₃–SiO₂ (\diamond) and Li₂O–SiO₂ (\Box) glasses as a function of the Li₂O content. The error limit is estimated as ± 0.003 . The data are taken from references [27–30]

in Eq. 4 to obtain f_{S2} . It must be stated that the presented relations are approximated. Formation of GaO₅ and GaO₆, if there were, is not taken into consideration. In addition deviations from stoichiometry in the conversion process of silicate units are neglected. It has been indicated [25] that such deviations are so small to affect the proposed model. Similar relations were successfully applied for the refractive index of R₂O–Al₂O₃–SiO₂ and RO–Al₂O₃–SiO₂ glasses [23, 26].

Results and discussion

In Fig. 1 is given, as an example, the refractive index of $Li_2O-Ga_2O_3-SiO_2$ glasses as a function of the Li_2O content. The data are taken from various sources [27–30]. They are compared with the values for Li_2O-SiO_2 glasses [30]. At a specific concentration of Li_2O there are different values of μ . Similar behavior is also observed for Na₂O-Ga₂O₃-SiO₂ [30–34], CaO-Ga₂O₃-SiO₂ [30, 35, 36], and BaO-Ga₂O₃-SiO₂ [30, 37] glasses (Tables 1, 2, 3, and 4). The increase in μ is mainly related to an increase in the content of Ga₂O₃. This is because, for a constant Li_2O content, an increase in the concentration of Ga₂O₃ is accompanied with a decrease in the SiO₂ content.

Figure 2 shows the correlation between the determined (μ_m) and calculated (μ_c) values of refractive indices of the

Li ₂ O (mol%)	Ga ₂ O ₃ (mol%)	SiO ₂ (mol%)	$\mu_{ m m}$	μ_{c}	$R_{\rm m}~({\rm cm}^3)$	$R_{\rm c}~({\rm cm}^3)$
0	0	100	1.458 ^a	1.459	7.436	7.438
12.5	12.5	75	1.537	1.535	8.224	8.226
16.7	16.7	66.6	1.562	1.561	8.510	8.490
20	20	60	1.582	1.581	8.684	8.698
25	25	50	1.611	1.611	9.027	9.013
27.5	27.5	45	1.623	1.626	9.173	9.170
16	12	72	1.542	1.541	8.049	8.101
20	2.5	77.5	1.510	1.515	7.186	7.189
20	5	75	1.525	1.524	7.406	7.405
20	10	70	1.546	1.515	7.814	7.836
20	12.5	67.5	1.556	1.552	8.029	8.051
20	15	65	1.564	1.562	8.244	8.267
25	5	70	1.539	1.536	7.265	7.289
25	10.7	64.3	1.562	1.557	7.774	7.780
25	15	60	1.575	1.574	8.104	8.151
27.5	10.4	62.1	1.563	1.562	7.652	7.696
27.5	18.1	54.4	1.595	1.591	8.386	8.360
30	5	65	1.551	1.548	7.161	7.173
30	10	60	1.570	1.567	7.560	7.604
30	14	56	1.584	1.582	7.927	7.948
30	20	50	1.604	1.604	8.465	8.466
35	5	60	1.561	1.560	7.003	7.057

^a Value of $\mu_{\rm m}$ for vitreous silica is taken from [39]

Table 1 Compositions, determined refractive index $\mu_{\rm n}$ [27–30], calculated refractive index $\mu_{\rm c}$, determined molar refraction $R_{\rm m}$, and calculated molar refraction $R_{\rm c}$ for Li₂O– Ga₂O₃–SiO₂ glasses Table 2Compositions,
determined refractive index μ_m [30–34], calculated refractive
index μ_c , determined molar
refraction R_m , and calculated
molar refraction R_c for Na₂O–
Ga₂O₃–SiO₂ glasses

Na ₂ O (mol%)	Ga ₂ O ₃ (mol%)	SiO ₂ (mol%)	$\mu_{ m m}$	$\mu_{\rm c}$	$R_{\rm m}~({\rm cm}^3)$	$R_{\rm c}~({\rm cm}^3)$
12.5	12.5	75	1.519	1.517	8.517	8.478
15	15	70	1.527	1.529	_	-
16.66	16.66	66.68	1.537	1.537	8.790	8.825
20	20	60	1.556	1.553	9.090	9.102
25	25	50	1.574	1.576	9.519	9.518
15	5	80	1.503	1.497	_	-
15	10	75	1.515	1.513	_	-
16.66	8.33	75.01	1.514	1.510	7.971	8.079
16.66	12.5	70.84	1.530	1.524	8.408	8.452
18.3	11.7	70	1.524	1.524	8.262	8.370
20	10	70	1.527	1.521	8.201	8.207
21	9	70	1.529	1.519	7.973	8.111
21	11.3	67.7	1.531	1.526	8.297	8.317
24.2	10.8	65	1.531	1.530	8.183	8.252
25	15	60	1.545	1.544	8.558	8.623
28.6	14.3	57.1	1.545	1.547	8.530	8.537
30	5	65	1.519	1.520	7.653	7.695
30	10	60	1.533	1.536	8.129	8.143
30.3	9.1	60.6	1.535	1.533	8.106	8.061
31.7	4.8	63.5	1.520	1.522	7.681	7.667

Table 3	Compositions,	
---------	---------------	--

determined refractive index $\mu_{\rm m}$ [30, 35, 36], calculated refractive index $\mu_{\rm c}$, determined molar refraction $R_{\rm m}$, and calculated molar refraction $R_{\rm c}$ for CaO–Ga₂O₃–SiO₂ glasses

CaO (mol%)	$Ga_2O_3 \pmod{\%}$	SiO ₂ (mol%)	$\mu_{ m m}$	$\mu_{ m c}$	$R_{\rm m}~({\rm cm}^3)$	$R_{\rm c}~({\rm cm}^3)$
15	15	70	1.570	1.570	8.638	8.627
20	20	60	1.610	1.607	9.008	9.023
25	25	50	1.645	1.645	9.393	9.419
30	30	40	1.684	1.682	9.887	9.815
40 ^a	40	20	1.745	1.756	_	-
15	10	75	1.542	1.547	8.188	8.203
20	10	70	1.561	1.560	8.160	8.174
20	15	65	1.583	1.584	8.525	8.599
25	15	60	1.604	1.598	8.527	8.570
30	10	60	1.602	1.597	8.052	8.118
40	10	50	1.633	1.638	7.974	8.063
40	20	40	1.664	1.662	8.814	8.910
40 ^a	30	30	1.708	1.709	9.854	9.759
50	10	40	1.664	1.668	7.931	8.011
50 ^a	40	10	1.757	1.784	-	-

^a Glasses having $y/z \ge 1$

glasses investigated. The μ_c values are obtained from Eqs. 2 and 4 and the f_u factors are given in Table 5. Figure 2 shows a reasonable agreement between μ_m and μ_c . However there are few deviated points. The small difference between μ_m and μ_c for these points implies that the cause might mostly be experimental. It is worthy to mention that μ_c values do not agree with μ_m for glasses with Ga₂O₃/SiO₂ \geq 1. This may suggest another distribution of the structural units in those glasses. Considering that z = (1 - 2y) in glasses having x = y, then Eq. 2a can be rewritten as

$$\mu = [2y(f_{G4} - f_{S4}) + f_{S4}]N_A.$$
(2b)

The slope of this straight-line is $2(f_{G4} - f_{S4})N_A$ and the intercept is $f_{S4}N_A$. The latter represents the refractive index of vitreous SiO₂. Figure 3 shows the dependence of μ on the modifier oxide content for glasses having x = y. Unfortunately the number of BaO–Ga₂O₃–SiO₂ glasses

refraction $R_{\rm m}$, and calculated
molar refraction R_c for BaO–
Ga ₂ O ₃ -SiO ₂ glasses

BaO (mol%)	$Ga_2O_3 \pmod{\%}$	SiO ₂ (mol%)	$\mu_{ m m}$	μ_{c}	$R_{\rm m}~({\rm cm}^3)$	$R_{\rm c}~({\rm cm}^3)$
20	10	70	1.577	1.578	9.016	9.011
20	15	65	1.591	1.593	9.380	9.475
20	20	60	1.610	1.609	9.855	9.938
30	10	60	1.619	1.622	9.315	9.331
30	30	40	1.682	1.684	11.185	11.188
40	10	50	1.661	1.665	9.735	9.653
40	20	40	1.688	1.697	10.670	10.584
40^{a}	30	30	1.710	1.728	_	-
40^{a}	40	20	1.736	1.759	_	_

^a Glasses having $y/z \ge 1$

Fig. 2 Correlation between the calculated refractive index μ_c and the determined refractive index μ_m for Li₂O–Ga₂O₃–SiO₂ (\Box), Na₂O–Ga₂O₃–SiO₂ (\odot), CaO–Ga₂O₃–SiO₂ (Δ), and BaO–Ga₂O₃–SiO₂ (\times) glasses. The μ_c values were obtained from Eqs. 2 and 4 and the factors given in Table 5. The μ_m data are taken from [27–37]. The solid line represents the fitting plot of the μ_m values

 Table 5
 Differential refraction of the structural units in the investigated glasses and in the corresponding binary silicate glasses

Type of glass	$f_{\rm S4}~(10^{-24})$	$f_{S3} (10^{-24})$	$f_{\rm S2} (10^{-24})$	$f_{\rm G4} \ (10^{-24})$
Li ₂ O–Ga ₂ O ₃ –SiO ₂	2.422	3.828	-	2.928
Na ₂ O–Ga ₂ O ₃ – SiO ₂	2.422	3.758	-	2.813
CaO-Ga ₂ O ₃ -SiO ₂	2.422	3.927	5.405	3.040
BaO-Ga ₂ O ₃ -SiO ₂	2.422	4.002	5.555	3.045
Li ₂ O–SiO ₂ [38]	2.422	3.832	-	-
Na ₂ O–SiO ₂ [38]	2.422	3.758	-	-
CaO–SiO ₂ [22]	2.422	3.927	5.405	-
BaO–SiO ₂ [22]	2.422	4.002	5.555	-

with x = y is insufficient to be presented. As shown both $\mu_{\rm m}$ and $\mu_{\rm c}$ verify Eq. 2b. The slopes of the lines are 0.0060, 0.0047, and 0.0075 mol⁻¹ for Li₂O-Ga₂O₃-SiO₂, Na₂O-Ga₂O₃-SiO₂, and CaO-Ga₂O₃-SiO₂ glasses, respectively. Noting that the *x*-axis in Fig. 3 is given in mol%, whereas *x*, *y*, and *z* are mole fractions, thus when dealing with Eq. 2b the given slopes should be 0.60, 0.47, and 0.75.

Fig. 3 Determined refractive index μ_m of Li₂O–Ga₂O₃–SiO₂ (\Box), Na₂O–Ga₂O₃–SiO₂ (\bigcirc), and CaO–Ga₂O₃–SiO₂ (Δ) glasses in dependence of the modifier oxide content. The glasses presented have equal concentrations of Ga₂O₃ and the modifier oxide (x/y = 1). The data are taken from [27–36]. The calculated refractive indices (\diamondsuit) are also presented. The solid lines are fitting plots of the μ_m values

These slopes can be obtained when using the values of f_{G4} and f_{S4} given in Table 5. It is to notice that the slope in Eq. 2b depends only on the value of f_{G4} , i.e., on the type of the modifier ion, whereas the intercept is the same in all cases. Such features are verified in Fig. 3.

Similarly, by taking into consideration that z = (1 - x - y), then for a constant value of *x*, the refractive index of glasses having (R₂O–Ga₂O₃)/SiO₂ ≤0.5 would be

$$u = \{y(2f_{G4} - 2f_{S3} + f_{S4}) + [x(2f_{S3} - 3f_{S4}) + f_{S4}]\}N_A.$$
(5)

The slope of this straight-line equation is $(2f_{G4} - 2f_{S3} + f_{S4})N_A$ and its intercept is $[x(2f_{S3} - 3f_{S4}) + f_{S4}]N_A$. Figure 4 shows the dependence of μ on the Ga₂O₃ content in Li₂O-Ga₂O₃-SiO₂ glasses having constant Li₂O content. The data of all glasses having the same value of x are arranged on a straight-line. In Eq. 5 the slope does not depend on the value of x. On the other hand the latter determines the value of the intercept. The straight lines in Fig. 4 agree with these predictions.

Fig. 4 Dependence of the determined refractive index μ_m (\Box , Δ , \bigcirc) on the Ga₂O₃ content for Li₂O–Ga₂O₃–SiO₂ glasses having constant concentrations of Li₂O. The data are taken from [27–30]. The calculated refractive indices (\diamondsuit) are also presented. The solid lines are fitting plots of the μ_m values

For $(Ga_2O_3/R_2O) \le 1$ and $(R_2O-Ga_2O_3)/SiO_2 \le 0.5$, Eq. 2 can be reformed to

$$\mu = x[2(f_{S3} - f_{S4})N_A] + y[2(f_{G4} - f_{S3} + f_{S4})N_A] + z(f_{S4}N_A).$$
(6)

Likewise, for $0.5 \le (R_2O-Ga_2O_3)/SiO_2 \le 1$ Eq. 4 can be rewritten as

$$\mu = x[2(f_{S2} - f_{S3})N_A] + y[2(f_{G4} + f_{S3} - f_{S2})N_A] + z[(2f_{S3} - f_{S2})N_A].$$
(7)

These relations can be used to calculate the refractive index in terms of factors for the individual oxides. For example, by using the factors given in Table 5 for Li₂O–Ga₂O₃–SiO₂ glasses, (R₂O–Ga₂O₃)/SiO₂ \leq 0.5, Eq. 6 becomes

$$\mu = 1.6934x + 1.8331y + 1.4585z. \tag{6a}$$

It appears that the empirically predicted factors used in technology for physical properties of various glasses might have structural bases.

From Eqs. 2 and 4 the concentration (N_u) of structural units in glass can be calculated. N_u is the number of structural unit per mole of glass. Thus the contribution $(N_u f_u)$ of a structural unit to the refractive index can be obtained. Figure 5 shows the change, with composition, of the contribution of structural units in $(40 - X)Li_2O \cdot$ $XGa_2O_3 \cdot 60SiO_2$ glasses ($5 \le x \le 20 \text{ mol}\%$). There is a linear change in the contribution of each type of structural units. As would be expected, from Eq. 2, $N_{G4}f_{G4}$ increases with increasing X. As the latter increases the quantity of Li_2O available to convert Q_4 units to Q_3 decreases and then $N_{G3}f_{G3}$ decreases. An increase in $N_{G4}f_{G4}$ follows the decrease in $N_{G3}f_{G3}$. The heavy black solid line in Fig. 5 represents the resultant contribution of all units in these

Fig. 5 Change with composition of $N_u f_u$ (the contribution to the refractive index of the structural units) in $(40 - X)Li_2O \cdot XGa_2O_3 \cdot 60SiO_2$ glasses. The heavy black solid line is the resultant contribution of all structural units in glass (μ_c). The \Box -symbol refers to μ_m values (Table 1)

glasses, i.e., the refractive index. As shown the heavy black solid line agrees well with the experimental data.

An interesting feature is observed in Fig. 5. The change in refractive index between 5 and 20 mol% Ga₂O₃ is relatively small (from 1.561 to 1.582) so that μ can be looked as unchanged with X and also with the Li₂O content. Figure 5 shows that there is a great decrease in $N_{S3}f_{S3}$ and a marked increase in $N_{S4}f_{S4}$ when X increases. Such changes might be embedded by some other effects. As shown in Fig. 5 the decrease in the resultant contribution of silicate units $(N_{S3}f_{S3} + N_{S4}f_{S4})$ is compensated with an increase in $N_{G4}f_{G4}$. The horizontal dashed line is the symmetry line between the plots of $N_{S3}f_{S3} + N_{S4}f_{S4}$ and $N_{G4}f_{G4}$. It can be said that in glasses having constant content of SiO₂ changes in the contribution of silicate units are compensated with changes in the gallate units. Similar features were reported for Na₂O-Al₂O₃-SiO₂ glasses [23]. For a constant SiO₂ content, the contribution from AlO₄ units compensates that of silicate units and the resultant μ does not change with changing the Al_2O_3 content.

The molar refraction is given by the Lorentz-Lorenz equation as:

$$R = \left(\frac{\mu^2 - 1}{\mu^2 + 2}\right) V_{\rm m},\tag{8}$$

where $V_{\rm m}$ is the molar volume and μ is the refractive index. Like μ , the molar refraction of $xR_2O \cdot yGa_2O_3 \cdot zSiO_2$ glasses having $(Ga_2O_3/R_2O) \leq 1$ and $(R_2O-Ga_2O_3)/SiO_2 \leq 0.5$, can be expressed as

$$R = \{2yR_{G4} + 2(x - y)R_{S3} + [z - 2(x - y)]R_{S4}\}N_A$$
(9)

where R_{G4} is the refraction [38] of the GaO₄ tetrahedron, R_{S3} is the refraction of Q₃, and R_{S4} is the factor for the Q₄ unit. Furthermore, for glasses having (Ga₂O₃/R₂O) \leq 1 and

Table 6 Refraction of the structural units in the investigated glasses and in the corresponding binary silicate glasses

Type of glass	$R_{\rm S4}~(10^{-24}~{\rm cm}^3)$	$R_{\rm S3}~(10^{-24}~{\rm cm}^3)$	$R_{\rm S2} \ (10^{-24} \ {\rm cm}^3)$	$R_{\rm G4}~(10^{-24}~{\rm cm}^3)$
Li ₂ O–Ga ₂ O ₃ –SiO ₂	12.352	16.60	_	17.58
Na ₂ O-Ga ₂ O ₃ -SiO ₂	12.352	18.00	-	19.26
CaO-Ga ₂ O ₃ -SiO ₂	12.352	18.06	23.79	18.93
BaO-Ga ₂ O ₃ -SiO ₂	12.352	21.21	30.00	22.73
Li ₂ O–SiO ₂ [38]	12.352	16.60	-	_
Na ₂ O-SiO ₂ [38]	12.352	18.12	-	_
CaO-SiO ₂ [24]	12.400	18.11	23.79	_
BaO–SiO ₂ [24]	12.400	21.21	30.00	-

 $0.5 \leq (R_2 O\text{-}Ga_2 O_3)/SiO_2 \leq 1$ the refractive index can be expressed as

$$R = \{2yR_{G4} + [2(x-y) - z]R_{S2} + 2[z - (x-y)]R_{S3}\}N_A$$
(10)

where R_{S2} is the refraction of Q_2 unit. As indicated above for x = y Eq. 9 would be

$$R = (2yR_{\rm G4} + zR_{\rm S4})N_{\rm A}.$$
 (11)

In this relation we can use the values of R_{S4} [24, 38] and R to get R_{G4} . The obtained values of R_{G4} for the glasses studied are given in Table 6. These values can be used in Eqs. 9 and 10 together with the previously obtained R_{S3} and R_{S4} [24, 38] to calculate R. Figure 6 shows a good agreement between the determined (R_m) and the calculated molar refraction (R_c).

By considering that z = (1 - 2y) then Eq. 11 can be reformed to

Fig. 6 Correlation between the calculated (R_c) and determined molar refraction (R_m) for Li₂O–Ga₂O₃–SiO₂ (\Box), Na₂O–Ga₂O₃–SiO₂ (O), CaO–Ga₂O₃–SiO₂ (Δ), and BaO–Ga₂O₃–SiO₂ (\times) glasses. The R_c values were obtained from Eqs. 9 and 10 and the factors given in Table 6. The R_m data are obtained from Eq. 8 by using the μ_m values given in Tables 1, 2, 3, and 4 and the corresponding densities (collected in [21]). The error limit is estimated as ±1%. The solid line represents the fitting plot of the R_m values

$$R = [2y(R_{G4} - R_{S4}) + R_{S4}]N_A.$$
(11a)

This is a straight-line equation. Its slope is $2(R_{G4} - R_{S4})N_A$ and the intercept is $R_{S4}N_A$. The plots in Fig. 7 show that both R_m and R_c verify Eq. 11a. It is worthy to note here that the slopes of these lines can be used to calculate R_{G4} .

Like the case of μ , for glasses having (Ga₂O₃/R₂O) ≤ 1 and 0.5 \leq (R₂O–Ga₂O₃)/SiO₂ ≤ 1 , *R* can be given as

$$R = \{y(2R_{G4} - 2R_{S3} + R_{S4}) + [x(2R_{S3} - 3R_{S4}) + R_{S4}]\}N_A.$$
(12)

This is also a straight-line equation for either x or y being constant. Parameters of the lines in Figs. 8 and 9 agree well with these relations. The slope and intercept of lines as obtained from the fitting equations are in agreement with those calculated from Eq. 12.

Fig. 7 Determined molar refraction $R_{\rm m}$ of Li₂O–Ga₂O₃–SiO₂ (\Box), Na₂O–Ga₂O₃–SiO₂ (\bigcirc), and CaO–Ga₂O₃–SiO₂ (Δ) glasses in dependence of the modifier oxide content. The glasses presented have equal concentrations of Ga₂O₃ and the modifier oxide (x/y = 1). The $R_{\rm m}$ data are obtained from Eq. 8 by using the $\mu_{\rm m}$ values given in Tables 1, 2, 3 and the corresponding densities (collected in [21]). The calculated molar refraction data $R_{\rm c}$ (\diamond) are also presented. The solid lines are the fitting plots of the $R_{\rm m}$ values

Fig. 8 Dependence of the determined molar refraction $R_{\rm m}$ (\Box , \bigcirc) on the Ga₂O₃ content for Li₂O–Ga₂O₃–SiO₂ glasses having constant concentration of Li₂O. The calculated molar refraction data $R_{\rm c}$ (\diamondsuit) are also presented. The solid lines are fitting plots of the $R_{\rm m}$ values

Fig. 9 Experimental (\Box, \bigcirc) and calculated data $(\diamondsuit, \blacklozenge)$ of refractive index and molar refraction of CaO–Ga₂O₃–SiO₂ glasses having constant concentration of Ga₂O₃ (10 mol%, Table 3). The data are presented as a function of the CaO content. The solid lines are fitting plots of the experimental data

Conclusion

The model presented can be used to follow the changes in μ and *R* for R₂O–Ga₂O₃–SiO₂ and RO–Ga₂O₃–SiO₂ glasses. The agreement in behavior and values between the calculated and experimental refractive index and molar refraction reveals that the presented model is adequate to describe the structure of these glasses. It is assumed that for $[Ga_2O_3/R_2O \text{ (or RO)}] \leq 1 Ga_2O_3$ has priority to consume an equivalent quantity of modifier oxide to form GaO₄ units. The rest of R₂O (or RO) associates with SiO₂ forming Q₃ or Q₂ units, depending on the composition.

Acknowledgements The author is grateful to two anonymous reviewers for their constructive comments that were useful in preparing the revised version of the article.

References

- 1. Shelby JE (1988) J Am Ceram Soc 71:c254
- 2. Wierzbicki MM, Shelby JE (1995) Phys Chem Glasses 36:150
- 3. Dumbaugh WH (1986) Phys Chem Glasses 27:119
- Hall DW, Newhouse MA, Borrelli NF, Dumbaugh WH, Weideman DL (1989) Appl Phys Lett 54:1293
- 5. Dumbaugh WH, Lapp JC (1992) J Am Ceram Soc 75:2315
- 6. Lapp JC (1992) Am Ceram Soc Bull 71:1543
- 7. Peng L, Stebbins JF (2008) J Non-Cryst Solids 354:3120
- Miyaji F, Tadanaga K, Yoko T, Sakka S (1992) J Non-Cryst Solids 139:268
- 9. Miyaji F, Yoko T, Jin J, Sakka S, Fukunaga T, Misawa M (1994) J Non-Cryst Solids 175:211
- 10. Zhong J, Bray PJ (1987) J Non-Cryst Solids 94:122
- 11. Lapp JC, Shelby JE (1986) J Non-Cryst Solids 86:350
- 12. Choi YG, Heo J, Chernov VA (1997) J Non-Cryst Solids 221:199
- 13. Fukumi K, Sakka S (1988) Phys Chem Glasses 29:1
- 14. Fukumi K, Sakka S (1987) J Non-Cryst Solids 95&96:193
- 15. Fukumi K, Sakka S (1987) J Non-Cryst Solids 94:251
- 16. Miyaji F, Sakka S (1991) J Non-Cryst Solids 134:77
- 17. Ruller JA, Jewell JM (1994) J Non-Cryst Solids 175:91
- 18. Allwardt JR, Lee SK, Stebbins JF (2003) Am Mineral 88:949
- 19. Lee SK, Stebbins JF (2006) Geochim Cosmochim Acta 70:4257
- 20. Lee SK, Stebbins JF (2009) Geochim Cosmochim Acta 73:1109
- Doweidar H, El-Damrawi G, Abd El-Maksoud S (2002) J Mater Sci 37:4703. doi:10.1023/A:1020681206750
- 22. Doweidar H (2000) J Non-Cryst Solids 277:98
- 23. Doweidar H (2002) J Non-Cryst Solids 303:387
- 24. Doweidar H, El-Damrawi GM, Abd El-Maksoud S (2002) Phys Chem Glasses 43:52
- 25. Doweidar H (1999) J Non-Cryst Solids 249:194
- 26. Doweidar H, Meikhail MS (2004) Phys Chem Glasses 45:252
- 27. Dubrovo SK, Tsekhomskaya TS (1964) J Appl Chem USSR (Engl Transl) 42:2295 (cited in reference 30)
- Dubrovo SK, Tsekhomskaya TS (1964) Kimiya Redkikh Elementov. Leningrad, p 91 (cited in reference 30)
- Tsekhomskaya TS (1966) Stekloobraznaye gallosilikaty litiya i produkty ikh kristallizatsii. Avtoref, Candidate's Dissertation, Leningrad (cited in reference 30)
- Bansal NB, Doremus RH (1990) Handbook of glass properties. Academic Press, Orlando, FL
- Dubrovo SK (1960) Stekloobraznaye Sostoyaniye. Moscow, p 418 (cited in reference 30)
- Danilova NP, Dubrovo SK (1965) Issledovaniya u Oblasti Khimii Silikatovi Okislov. Moscow, p 18 (cited in reference 30)
- Dubrovo SK, Danilova NP, Tsekhomskaya TS (1965) Issledovaniya v Oblasti Khim. Silikat. i Okislov. Moscow, p 11 (cited in reference 30)
- 34. Takahashi K, Mochida N, Hatta G (1975) Yogyo Kyokaishi 83:103 (cited in reference 30)
- 35. Danilova NP (1967) Steklo 1:89 (cited in reference 30)
- Danilova NP, Dubrovo SK (1967) J Appl Chem USSR (Engl Transl) 40:959 (cited in reference 30)
- Danilova NP, Dubrovo SK (1971) Glass formation of silicates of barium. 3509-71, Dep. VINITI (cited in reference 30)
- 38. Doweidar H (2000) Phys Chem Glasses 41:94
- Scholze H (1990) Glass: nature, structure and properties. Springer Verlag, New York